1/33

Gentle introduction to XSLT

Magdalena Turska
@magdaturska

April 2015

2/33

What is the XSL family?

@ XPath: a language for expressing paths through
XML trees

@ XSLT: a programming language for transforming
XML

These pdf slides were produces from XML with XSLT! |

What is a transformation?
Take this:

<persName>
<forename>Milo</forename>
<surname>Casagrande</surname>

</persName>

<persName>
<forename>Corey</forename>
<surname>Burger</surname>

</persName>

<persName>
<forename>Naaman</forename>
<surname>Campbell</surname>

</persName>

and make this:

<item n="1">
<name>Burger</name>

</item>

<item n="2">
<name>Campbell</name>

</item>

<item n="3">
<name>Casagrande</name>

</item>

3/33

4/33

A text example

Take this

<div type="recipe" n="34">
<head>Pasta for beginners</head>
<list>
<item>Pasta</item>
<item>Grated cheese</item>
</list>
<p>Cook the pasta and mix with the cheese</p>
</div>

and make this

<html>
<h1>34: Pasta for beginners</hl>
<p>Ingredients: Pasta Grated cheese</p>
<p>Cook the pasta and mix with the cheese</p>
</html>

5/33

How do you express that in XSL?

<xsl:stylesheet xpath-default-namespace="http://www.tei-
c.org/ns/1.0"
version="2.0">
<xsl:template match="div">
<html>
<hl>
<xsl:value-of select="@n"/>:
<xsl:value-of select="head"/>
</hl>
<p>Ingredients:
<xsl:apply-templates select="list/item"/>
</p>
<p>
<xsl:value-of select="p"/>
</p>
</html>
</xsl:template>
</xsl:stylesheet>

How does it work?

Source documents

TEI XML

Output documents

XSLTransform file HTML. PDF, ePub ..

o @

XSLT Processor

eg Saxon, xsltproc ...

6/33

7/33

XSLT

The XSLT language is

@ expressed in XML

@ uses namespaces to distinguish output from
instructions

@ purely functional
@ reads and writes XML trees

Widely used to generate HTML, but can be used to
generate other formats as well: pdf, docx, KML.

8/33

How could XSLT be used?

@ With a command-line program to transform XML (eg
to HTML)

@ In a web server, eg serving up HTML from XML (eg
Cocoon, eXist)

@ In a web browser, displaying XML on the fly
(beware: not all clients understand it)

@ Embedded in specialized program

@ As part of a chain of production processes,
performing arbitrary transformations

9/33

Structure of an XSL file

<xsl:stylesheet xpath-default-namespace="http://www.tei-
c.org/ns/1.0"
version="2.0">
<xsl:template match="div">
<!-- do something with div elements....-->
</xsl:template>
<xsl:template match="p">
<!/-- do something with p elements. -->
</xsl template>
</xsl:stylesheet>

The div and p are XPath expressions, which specify

which bit of the document is matched by the template.
Any element not starting with xsl: in a template body is

put into the output.
Doesn't make sense? Let's try analogy!

10/33

Little house (on a prairie)

You want to build a house. What do you do?
@ choose your project

@ find your builder, give her your project
@ wait for happy end

11/33

Project aka source document

<house>
<foundation depth="100" unit="cm"/>
<walls>
<wall height="270" width="500"
unit="cm" direction="se"/>
<wall height="270" width="600"
unit="cm" direction="nw"/>
<wall height="270" width="500"
unit="cm" direction="se"/>
<wall height="270" width="600"
unit="cm" direction="nw"/>
</walls>
<roof material="slate" angle="45"/>
<happyend bill="gigantic"/>
</house>

Little house - cd
Your builder builds you a house. What does she do?

@ reads from the project, finds she needs to put up
foundations

@ calls up foundations specialist and waits until it's
done

@ reads further from the project, finds she needs to
put up walls

@ calls up walls specialist and waits until it's done

@ reads further from the project, finds she needs to
put up a roof (people these days)

@ calls up roof specialist and waits until it's done

@ reads further (or tries to) from the project but she
reached the end, so tidies up, presents you with a
bill and goes to Majorca for holiday

So maybe this is not how real-life construction works,
but if you think your XSLT processor is your builder,
1533 source document is the project and templates are your lT

13/33

How does it work again?

phﬂr\e dlnec!ary

14/33

The Golden Rules of XSLT

@ If there is no template matching an element, we
process the elements inside it

@ If there are no elements to process by Rule 1, any
text inside the element is output

© Children elements are not processed by a template
unless you explicitly say so:

©Q xsl:apply-templates select="XX" looks for
templates which match element "XX";
xsl:value-of select="XX" simply gets any text
from that element

© The order of templates in your program file is
immaterial

@ You can process any part of the document from any
template

@ Everything is well-formed XML. Everything!

Important magic

Our examples and exercises all start with two important
attributes on <stylesheet>:

<xsl:stylesheet xpath-default-namespace="http://www.tei-
c.org/ns/1.0"

version="2.0">....
</xsl:stylesheet>

which indicates

@ In our XPath expressions, any element name
without a namespace is assumed to be in the TEI
namespace

@ We want to use version 2.0 of the XSLT
specification. This means that we must use the
Saxon processor for our work.

. @
15/33 lllé

16/33

A simple test file

<text>
<front>
<div>
<p>Material up front</p>
</div>
</front>
<body>
<div>
<head>Introduction</head>
<p rend="it">Some sane words</p>
<p>Rather more surprising words</p>
</div>
</body>
<back>
<div>
<p>Material in the back</p>
</div>
</back>
</text>

17/33

Feature: apply-templates

<xsl:stylesheet version="2.0"
xpath-default-namespace="http://www.tei-c.org/ns/1.0">
<xsl:template match="/">
<html>
<xsl:apply-templates/>
</html>
</xsl:template>
</xsl:stylesheet>

<xsl:template match="TEI">
<xsl:apply-templates select="text"/>
</xsl:template>

<xsl:template match="text">
<h1>FRONT MATTER</h1l>
<xsl:apply-templates select="front"/>
<h1>BODY MATTER</h1>
<xsl:apply-templates select="body"/>
</xsl:template>

Feature: value-of
Templates for paragraphs and headings:

<xsl:template match="p">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>
<xsl:template match="div">
<h2>
<xsl:value-of select="head"/>
</h2>
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="div/head"/>

Notice how we avoid getting the heading text twice.

Why did we need to qualify it to deal with just <head>
inside <div>?

. @
18/33 lllé

19/33

Example of context-dependent matches

Compare

<xsl:template match="head">
</xsl:template>

with

<xsl:template match="div/head"> ...
</xsl:template>

<xsl:template match="figure/head">
</xsl:template>

20/33

Pushing and pulling

XSLT stylesheets can be characterized as being of two

types:
push

pull

In this type of stylesheet, there is a different
template for every element, communication
via <xsl:apply-templates> and the overall
result is assembled from bits in each
template. It is sometimes hard to visualize
the final design. Common for
document-oriented processing where the
input document structure varies.

In this type, there is a master template
(usually matching /) with the main structure
of the output, and specific <xsl:for-each> or
<xsl:value-of> commands to grab what is
needed for each part. The templates tend to
get large and unwieldy. Common for .
data-oriented processing where the lT

Do you push or pull a house t gether?
Remember our little house example? Let's Say your

project looks like this:

<bathroom>
<tiles/>
<bath>
<tap/>
</bath>
<sink>
<tap/>
</sink>
</bathroom>

<xsl:template match="bathroom">
<xsl:apply-templates select="tiles"/>
<xsl:apply-templates select="bath"/>
<xsl:apply-templates select="sink"/>
<xsl:apply-templates select=".//tap"/>

</xsl:template>

<xsl:template match="sink"> Sing before you sink!

SPLISH! SPLASH! Done!

Note no calling apply-templates whatsoever, because sink

template cares not for its children!

</xsl:template>

5133 <Xsl:template match="tap"> Tap! Tap! Tap! Dance!

22/33

More complex patterns

The match attribute of <template> can point to any
part of the document. Using XPath expressions, we can
find:

/ the root of document (outside the root ele-
ment)

* any element

text()

name an element called ‘name’

@name an attribute called ‘name’

Example of complete path in <value-of>:

<xsl:value-
of select="/TEI/teiHeader/fileDesc/titleStmt/title"/> J

23/33

Attribute value template

What if we want to turn

<ref target="http://www.it.ox.ac.uk/">IT Services</ref>)
into
IT Services)

? What we cannot do is

<xsl:template match="ref">

<xsl:apply-templates/>

</xsl:template>

This would give the @href attribute the literal value
‘@target’.

24/33

For example

Instead we use {} to indicate that the expression must
be evaluated:

<xsl:template match="ref">

<xsl:apply-templates/>

</xsl:template>

This would give the @href attribute whatever value the
attribute @target has!

25/33

Feature: for-each o
If we want to avoid lots of templates, we can do in-line

looping over a set of elements. For example:

<xsl:template match="listPerson">

<xsl:for-each select="person">

<xsl:value-of select="persName"/>
</1i>
</xsl:for-each>

</xsl:template>

contrast with

<xsl:template match="listPerson">

<xsl:apply-templates select="person"/>

</xsl:template>
<xsl:template match="person">

<xsl:value-of select="persName"/>
</1i>
</xsl:template>

26/33

Feature: if

We can make code conditional on a test being passed:

<xsl:template match="person">
<xsl:if test="@sex='1l'">

<xsl:value-of select="persName"/>
</1i>
</xsl:if>
</xsl:template>

contrast with

<xsl:template match="person[@sex='1"']">

<xsl:value-of select="persName"/>
</11i>
</xsl:template>
<xsl:template match="person"/>

The @test can use any XPath facilities.

Feature: choose

We can make a multi-value choice conditional on what
we find in the text:

<xsl:template match="person">
<xsl:apply-templates/>
<xsl:choose>
<xsl:when test="@sex='1l'">(male)
</xsl:when>
<xsl:when test="@sex='2'">(female)
</xsl:when>
<xsl:when test="not(@sex)">(no sex specified)
</xsl:when>
<xsl:otherwise>(unknown sex)
</xsl:otherwise>
</xsl:choose>
</xsl:template>

. @
27/33 lllé

28/33

Feature: number

We can produce numbering based on the position of
elements in the text.

@ Position within containing element:

<xsl:template match="p">
<xsl:number/>
</xsl:template>

@ Position within whole document:

<xsl:template match="p">
<xsl:number level="any"/>
</xsl:template>

© Position within an element further up the tree:

<xsl:template match="1">
<xsl:number level="any" from="1g"/>
</xsl:template>

29/33

TEI Stylesheets
The TEI Consortium loosely owns and manages a family
of XSLT stylesheets which operate on TElI XML
documents. They can be used:

@ to implement an ODD processor, generating
schemas and documentation from TEI sources (this
is what the Consortium primarily needs)

@ to do general-purpose formatting of TEI XML to
‘human-readable’ formats like HTML, ePub, LaTeX,
XSL FO

@ to convert between TEI XML and Microsoft Word,
and between TEI and Open Office, format

@ to convert between TEI and some other XML
formats (TEI P4, EEBO TCP, NLM, Docbook)

@ to generate JSON, RDF, BibTeX and other strange
formats

There is no one right way to render TEI documents

What do the Stylesheets packages actually
provide?

@ A set of XSLT 2.0 transformations which read and
write TEI XML

@ A set of Ant scripts to package the transforms

@ A set of Unix shell scripts, calling on Ant, to perform
all conversions

@ Use "trang" library to generate XSD from RELAXNG
@ Use a TeX install to write PDF
@ Use "profiles" as containers for customization

Do not assume that the conversions cover every
feature of the input and output formats! J

. @
30/33 l.F

TEI stylesheet availability

The XSLT files are available:

@ for download from Sourceforge
(https://sourceforge.net/projects/tei/
files/Stylesheets/)

@ within oXygen (in the TEI framework which can be
updated separately from main oXygen)

@ as Debian packages (for Linux users); see
http://tei.oucs.ox.ac.uk/teideb/

@ in OxGarage (see later)

@ on Github
(http://www.github.com/TEIC/Stylesheets)

31/33

https://sourceforge.net/projects/tei/files/Stylesheets/
https://sourceforge.net/projects/tei/files/Stylesheets/
http://tei.oucs.ox.ac.uk/teideb/
http://www.github.com/TEIC/Stylesheets

32/33

Usage examples

@ in oXygen, | choose the transformation scenario
called "TEI P5 DOCX"
©@ On a command line line, | write

docxtotei testll.docx test.xml J

© Using Ant, | write

DinputFile="pwd /Test/testll.docx -DoutputFile=test.xml -

ant -f docx/build-from.xml -
lib lib/saxon9he.jar J

@ If I have a way of sending the file using REST, it
would go to

webservice/Conversions/docx%3Aapplication%3Avnd.openxmlforma

http://oxgarage.oucs.ox.ac.uk:8080/ege-
S_
officedocument.wordprocessingml.document/TEI%3Atext%s3Axml/ #

iT

TEI Stylesheet family top-level layout

Some of the directories for output formats

docx
epub
fo
latex
nim
odds
odt
slides
tite
html

Converting to and from Word OOXML
Converting to ePub

Making XSL FO

Making LaTeX

Converting from NLM

Transforming TEI ODD specifications
Converting to and from OpenOffice Writer
Making slides (HTML and PDF)
Converting from TEI Tite

Making HTML

Special directories

profiles
common

33/33

Customizations
Templates for any output format

