

Daniele Fusi

Application of neuronal recognition to digital editions

Digital editions and specialized applications

DIGITAL EDITION SYSTEM

- monographic corpora:
 - Sydney: digital corpus of Classical Greek Theatre (inscriptions, literary passages, archaeological data)
 - Padoa: heroes (inscriptions, literary passages)
- Greek and Latin, ancient and medieval inscriptions collections

SPECIALIZED APPLICATIONS

- edition as a base for specialized applications, which in turn add new data to it:
 - linguistical applications (language evolution, morphological inflection engine)
 - automated full prosodical and metrical analysis
 - paleographical applications

Epigraphical texts and images

 digital drawings
 text / image synchronized reading
 online virtual paleographical measurements

retouched digital photo digital drawing EKOIMHOHL TO HTHNHHLOYN TO * THEATIXEKALKA00

extracted drawing

Paleographical specializations

extract all the letter shapes from each drawing, getting a full digital paleographical catalog

Recognizing letter shapes

enable the system to automatically recognize letter shapes belonging to different regions or times: paleographical query

Artificial Neuronal Networks

Essential Overview

Algorithmic approach

algorithmic approach for solving problems: there is a sequence of instructions to follow, and this of course implies that we must know them in advance

Artificial neuron

Artificial neurons network

- set of several neurons, variously interconnected
- the interaction of neurons through their connections defines an emergent behaviour for the network
- network abilities
 supercede single
 neurons abilities

Artificial Neural Network: sample

several inputs: animals features

Learning by samples: training

- ANN training:
 - present samples for each class
 - ANN learns to associate the features of each sample to its class

ANN: training mode

ANN: training mode

ANN: training mode

ANN: inference

- we just feed the ANN with input samples for each class
 - the ANN 'infers' the features which define each class from its samples
- samples never found before can be classified by similarity

ANN: sense of similarity

- a neuron fires its signal from a set of input signals (animal features): not all of them are required, but just enough for the neuron to fire
- the output is returned which is most similar to the nearest input pattern

Similarity: sample

 white dog is the taught pattern

 black dogs too can be recognized as dogs (rather than cats or fishes), as their features set is most similar to the dogs class features set (except for color)

Input: weights

most weight

+ears if we want to distinguish just sea/non-sea animals

+fur if we want to distinguish just men from monkeys

least weight

Input: preprocessing

several features in input data can be directly discarded as irrelevant ("noise", which might mislead ANN recognition): e.g. colors (convert all animals pictures to B/W)

ANN usages: pattern recognition

- define a set of classes (e.g. dogs, cats, fishes)
- each entity we want to classify is defined by a set of features
- 3. we (preprocess and) present samples of each class to the ANN, and it infers the typical features set for each class
- 4. once trained, any other sample presented can be classified as the most similar to any of the specified classes

Benefits of ANN in recognition

- an algorithmic approach, which might be impossible, is not required: it's the ANN which 'figures out' patterns from samples (we tell it what we want, not how to do it)
- ANN weights and preprocessing techniques rule out irrelevant features and allow to define patterns similarity

ANN in paleography

Practical issues

Defining patterns from shapes

sample as a numeric vector

Practical issues

- often complex preprocessing required for letters taken from photos (colors, background, size, outlining...)
- large vectors (grids) to account for shapes details, whence memory and performance issues
- lack of very high number of samples required by this model

Paleography: additional issues

- manuscripts add complexity (ligatures) and classes (letters groups or words as single classes)
- high number of classes for finer nuances (different shapes of the same letter, not only different letters)
- weighting input: similarity treshold must be:
 - *low* to allow variant forms be classified as same letter
 - high to allow them to be classified as paleographically different classes

τό το ένεφυστουν είς αυ τός, ας που Αμαρτίαις συν χωρήσετε ναι συν αραρτίαις συν χωρήσετε ναι συν αραρτίαις συν χωρήσετε ναι συν αραγηθίαις, υζό ποιον αρα τή τε έναι υρα την διαμος, ένας α πό τός διάδεμα, δε πτον μετ ώτος, όταν πλθεν ό Ιποδς Έλε νάντος δόταν πλθεν ό Ιποδς Έλε κάμαι τόν Κύρων Καί ευείνος τός καθαι τόν δά μαρφίων, υζάν δε δαλλω τόν δά μαρφίων, υζάν δε δα μαδία το μεριμο ές τίω πλογάτ το . δω βέλω πης διοει.

ans Auceday

Practical solutions: preprocessing

 graphical preprocessing, coupled with:
 theorical framework capable of defining relevant (most weighting) features for each shape: we cannot expect to just feed an ANN with a bunch of shapes and let it recognize letter variants. Data quality matters. ANN is no magic!

Sample: a textual analogy

Detecting alliteration in Classical texts

Case study: alliteration

 "repetition of sounds": naive solution: just counting letters (Evans)

Alliteration: counting letters

tympana tenta tonant palmis et cymbala / circum concava (Lucr.2,618-9)

 «t» does not clearly stand out

- vowels look
 overestimated
- all the letters
 have the same
 weight
- most slices are just noise

Theorical framework

- phonemic analysis (at least approximate): ears, not eyes (preprocessing)
- mainly word-beginning sounds (IE inflectional languages endings, poetic tradition, diachronic phenomena...)
- hierarchy: word, syllable, phoneme, in sentence (or line) scope

Algorithm definition

- 1. find all the words beginning with same sounds
- 2. sequence treshold: min.number of adjacent words
- 3. for each sequence, count the shared sounds and get their distance (word heads)
- 4. repeat for syllables in sequence words (syllabic heads)
- 5. also examine segments echoing the head sound in the remaining syllables portions (segmental echoes)

Processing for alliteration detection

JUST COUNTING LETTERS

count letters in text

TEXT PROCESSING

- sounds, not letters
- scope: sentence / line
- levels hierarchy from word to syllable up to phoneme
- word beginning sounds are paramount
- relative distance and extent of equal word portions

Analogies with ANN approach

ALLITERATION IN TEXT

- naive approach: just take a bunch of characters and swallow it (letters counts) with no preliminary analysis or theorical grounds
- too much noise, generated from an oversimplified definition of alliteration

SHAPES RECOGNITION

- naive approach: just take letters images and feed an ANN with them
- too much noise: our theory must tell us how to adjust weighting and which preprocessing is required to rule out distracting features; or recognition quality will be poor, just as alliteration does not appear from a letters chart

Preprocessing and purposes

ALLITERATION IN TEXT

- different literary genres
- different poetical traditions
- different languages
- adjust analysis parameters accordingly

SHAPES RECOGNITION

- inscriptions or manuscripts
- different number of classes
- different level of graphical complexity
- different number of available samples
- adjust ANN weights and preprocessing accordingly (paleography expertises required!)

Practical scenarios

Solution hints

Issues: adjusting and partitioning

ANN ISSUES

- lack of samples
- very complex shapes and high number of classes
- weights must range from lowest (to recognize variants as same letter) to highest (to recognize nuances up to scribal variants)

PARTITIONING PROBLEMS

- setup a theorical framework for defining the relevance of letters traits (whence weights and preprocessing)
- allow partitioning data into more abstract subsets

Partitioning data: analogy

IDENTIKIT

- an approximate face reconstruction is built of single essential blocks
- each block is recognized (picked up) and then added to the face

ANN RECOGNITION

- input samples can be heavily preprocessed (transformed) into simpler shapes according to our theorical framework
- several layers or networks can be trained for recognizing different traits of these shapes

Partitions and layers

Daniele Fusi

http://www.fusisoft.it

daniele.fusi@uniroma1.it